

Effect of partial substitution of Ca by La on intergranular processes in (Bi,Pb):2223 superconductors*

A. V. POP*, I. MATEI, M. POP^a

Faculty of Physics, University Babes-Bolyai, 40084 Cluj-Napoca, Romania

^aDepartment of Material Processing Engineering, Technical University, Cluj-Napoca, Romania

The influence of partial substitution of Ca by La on (Bi,Pb)2223 phase purity and intergranular dissipative processes is characterized by XRD and a.c.magnetic susceptibility function of temperature and a.c. field amplitude. The intergranular phase diagram H_p function of temperature and the intragrain contributions of effective volume fraction of the grains f_g were estimated.

(Received March 31, 2008; accepted August 14, 2008)

Keywords: Bi:2223, Atomic substitution, X-ray diffraction, a.c.susceptibility

1. Introduction

Intense studies were made in order to improve the superconducting properties of Bi-based superconductors with general formula $Bi_2Sr_2Can-1Cu nO_y$, where $n = 1, 2$, and 3 . This system holds some advantage, because its oxygen stoichiometry is relatively invariant with respect to cationic dopings when the samples are prepared in identical conditions [1,2].

In Bi:2212 compound, the substitution of rare earth elements in place of Ca are of much interest because it leads to structural stability and helps in understanding the nature of charge carriers as well as the effect of variation of carrier concentration of the system [3-6].

AC susceptibility measurements is a useful tool to investigate the magnetic and superconducting

Properties and for making the distinction between intergrain and intragrain properties. Two loss peaks are usually present in the imaginary part of susceptibility data; a broad peak at low temperature due to the motion of intergranular (Josephson) vortices [7] and a narrower peak due to the motion of intragranular (Abrikosov) vortices inside the superconducting grains near T onset [8]. These two peaks depend on the sample processing variables as well as the samples composition for the Bi-2223 system [9,10]

The increase of J_{transc} in the samples by increasing cooling rates may be caused by the increase of grain sizes and by improved coupling between superconducting grains [11].

In this article we report on the effects of partial substitution of Ca by Sm in Bi-2223 superconductor on AC losses as well as the field and temperature dependence of the intergranular critical current density. The effect of Sm concentration on the intergrain properties of Bi-2223 superconductors was studied.

2. Experimental

Polycrystalline samples with nominal composition $(Bi_{1.6} Pb_{0.4})(Sr_{1.8} Ba_{0.2})(Ca_{1-x} La_x)_2 Cu_3 O_y$ with $0 \leq x \leq 0.05$ were prepared by the conventional solid -state reaction. Appropriate amounts of Bi_2O_3 , PbO , $SrCO_3$, BaO , $CaCO_3$, La_2O_3 and CuO were mixed in agate mortar and calcined at $800^\circ C$ for 36 hours. The calcinated powder was pressed into pellets and sintered at $845^\circ C$ for 200 hours. The pellets were grinding, pressed and resintered for 60 hours at $850^\circ C$. Slabs thickness $2d=3mm$ were cut from the sintered samples and used for a.c. susceptibility measurements. The phase purity was determined by Brucker X-ray diffractometer with $Cu-K\alpha$ radiation. The results have shown that the sample with $x \leq 0.01$ has a single (2223) phase. With increasing x up to $x=0.02$, peaks corresponding to (2212) phase have increased in number and intensities.

The real (χ') and imaginary (χ'') parts of the a.c. susceptibility were simultaneously collected with a Lake Shore Model 7000 a.c. susceptometer in the temperature range from $77K$ to $110K$, by using frequencies f and a.c. field amplitudes H_{ac} situated in the ranges from 20 Hz to 1000 Hz and from 20 A/m to 800 A/m respectively.

3. Results and discussion

In Fig. 1, we display the AC susceptibility versus temperature graph for $x=0.00, 0.02$ and 0.05 La samples at $H_{ac}=100$ A/m field amplitudes. It is evident that La substitution has an effect on both AC loss peaks and shielding behavior of the superconducting BSCCO samples.

*paper presented at the Conference “Advanced Materials”, Baile Felix, Romania, November 9-10, 2007.

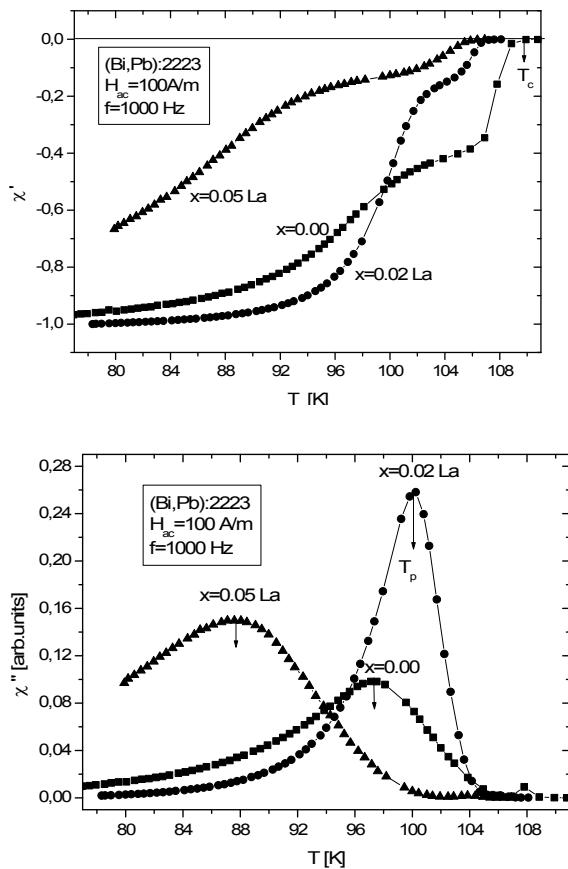


Fig. 1. AC susceptibility real (χ') and imaginary (χ'') parts as function of temperature at $H_{ac} = 100$ A/m and $f = 1000$ Hz for samples with $x = 0.00, 0.02$ and 0.05 La..

When the samples are at just below T_c , the superconducting grains first shield the applied magnetic field. This is measured as a negative χ' . The diamagnetic onset temperature, T_c , decreases from 110 K to 107 K by increasing La concentration from $x = 0.00$ to $x = 0.02$. This temperature remains constant at different values of AC field amplitude. As shown figure 1, the real part of AC susceptibility, χ' versus T shows for all samples two step process which reflects the flux penetration into and between the grains. At low enough temperature, intergranular component of χ' appears. At low temperatures, the entire volume of the sample is expected to be shielded by the supercurrent circulating around the sample along the grains and through the matrix and hence the When the samples are at just below T_c , the superconducting grains first shield the applied magnetic field. This is measured as a negative $\chi'(T)$ curve saturates.

In Fig. 1, $\chi''(T)$ exhibit a single peak at temperature T_p indicating a maximum hysteresis losses due to the motion of the intergranular (Josephson) vortices. With increasing the amplitude H_{ac} of alternative field, the χ'' signal shifts to lower temperatures and broadens. This result show that the intergranular coupling decrease with increasing the ac field amplitude. The value of temperature T_p for maximum

of χ'' is influenced different by the concentration x of La. By increasing x from $x = 0.00$ up to $x = 0.02$ La, the peak at temperature T_p increases. The increase of x above $x = 0.02$ lead to the decrease of T_p . The amount of the shift as a function of the field amplitude is proportional to the magnitude or strength of the pinning force. The width of each peak is manifestation of temperature exponent p of the intergranular critical current density in the expression:

$$J_{cJ} = \frac{\alpha_0}{B^n} \left(1 - \frac{T}{T_c}\right)^p$$

where α_0 is the pinning strength parameter at $T = 0$, T_c is the transition temperature for matrix and B_n the field dependence of the intergranular (matrix) current density [12].

Fig. 2 shows the semi-log plot of the AC loss peak temperatures, T_p , as a function of various AC field amplitudes, for our studied samples. The peaks shift to the higher temperature by increasing La concentration up to $x = 0.02$ resulting in a increase of intergranular critical current density. By increasing x to 0.05 the peak shift to lower temperature, suggesting the decrease of intergranular pinning force.

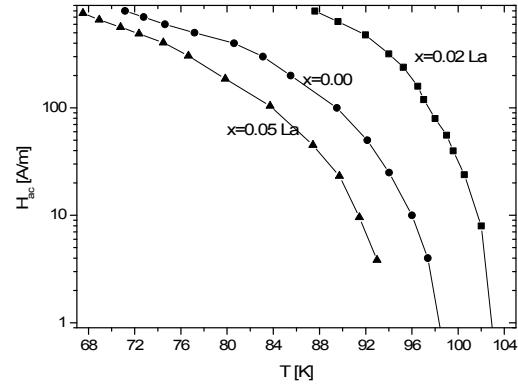


Fig. 2. The variation of H_{ac} as a function of peak temperature.

To separate the intra- and intergrain contribution, one has to know the effective volume fraction of the grains f_g . Method of calculations for f_g is reported by several workers. In reference [13] the experimental AC susceptibility data $\chi''(T)$ were plotted versus $\chi'(T)$ and the value of f_g is obtained. Applying the same procedure in Fig. 3, we obtained the values of $f_g = 0.39$; 0.15 and 0.12 for $x = 0.00$; 0.02 and 0.05 La, respectively.

It should be noted that partial substitution of Ca by La change the values of f_g .

We can attribute the variation in the parameter f_g to the multiphase and granular structure of these ceramic superconductors, and the increase of T_p for $x = 0.02$ to the reduction of modulation structure by La and the increase of intergranular coupling.

The study of La influence on intergranular dissipation were studied from electrical resistivity function of temperature measurements.

Fig. 4 show that above the excess conductivity region, in the 200K-300K temperature range, our samples are characterised by a linear temperature dependence of the electrical resistivity:

$$\rho = \rho_0 + \alpha * T$$

where ρ_0 is the residual resistivity and α is the slope of resistivity in the normal state.

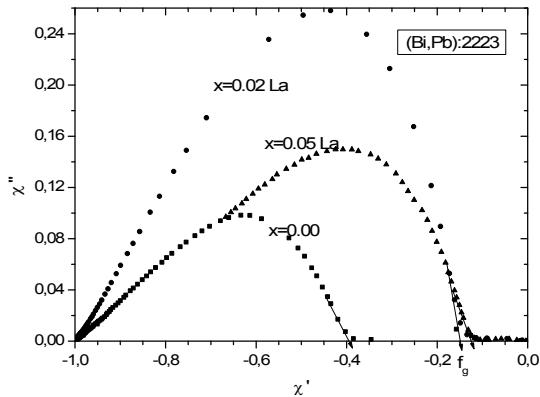


Fig. 3. χ'' versus χ' for $x=0.00; 0.02$ and 0.05 La. The value of f_g is obtained by the linear extrapolation of χ'' versus χ' dependence.

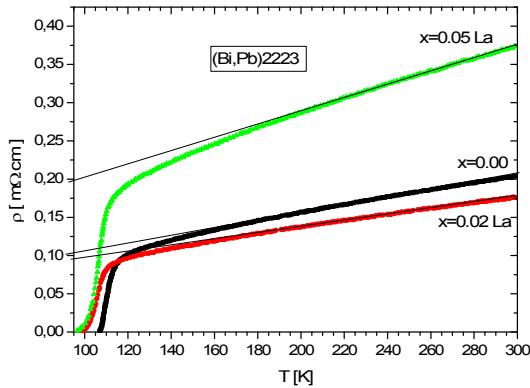


Fig. 4. Electrical resistivity versus temperature for $x=0.00; 0.02$ and 0.05 La doped samples. The straight lines shows the extrapolation for linear dependence of $\rho(T)$.

Table 1. Parameters of undoped and La doped samples obtained from resistivity and XRD data.

Sample	T _c [K]	ΔT _c [K]	T _c (ρ=0) [K]	ρ(0) [μΩ.cm]	α=dρ/dT [μΩ.cm/K]	Phase content %vol		
						2223	2212	2201
x=0.00	109.5	4	107.0	71	4.8	98	traces-	--
x=0.02 La	107.5	5	107	67	4.1	98	urme	-
x=0.05 La	106.5	5	100	114	8.7	92	8	

The dependence of $T_c(\rho=0)$ function of x may be in relation by phase content and intergrain dissipation processes.

4. Conclusions

The partial substitution of Ca by La ($x=0.00;0.02;0.05$) in $(Bi_{1.92}Pb_{0.44})Sr_2(Ca_{1-x}La_x)2Cu_3Oy$ bulk superconductor was performed.

By increasing x up to $x=0.02$, peaks corresponding to (2212) phase have increased in number and intensities.

The intergranular pinning force is different influenced by the partial substitution of Ca by La in $(Bi,Pb):2223$ samples.

$\chi''(T)$ versus T shows for all samples two step process which reflects the flux penetration into and between the grains.

$\chi''(T)$ exhibit a single peak at temperature T_p indicating a maximum hysteresis losses due to the motion of the intergranular (Josephson) vortices.

Semi-log plot of the AC loss peak temperatures, T_p , as a function of various AC field amplitudes, for our studied samples, shows that La influence different the intergrain coupling, (which increase for La concentration up to $x=0.02$ and decrease for $x=0.05$).

The partial substitution of Ca by La decreases the effective volume fraction of the grains, f_g .

In normal region all samples show a linear temperature dependence of electrical resistivity function of temperature. The decrease of residual resistivity in sample $x=0.02$ La agree with the increase of intergranular critical current density.

Acknowledgments

The authors are grateful to MCT (PNCD II – Parteneriate) and Romanian Academy for the financial support.

References

- [1] J. M. Tarascon, P. Barboux, G. W. Hull, R. Ramesh, L. H. Greene, M. Grioud, M. S. Hedge, W. R. McKinnon, Phys. Rev. B **38**, 4316 (1989).
- [2] K. Koyama, S. Kanno, S. Noyuchi, Jpn. J. Appl. Phys. **29**, L53 (1990).
- [3] R. P. Aloysius, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. **18**, L1 (2005).
- [4] C. C. Torardi, J.B. Parise, M.A. Subramanian, J. Gopalakrishnan, A. W. Sleight, Physica C **157**, 115 (1989).
- [5] C. A. M. dos Santos, S. Moehlecke, Y. Kopelevich, A. J. S. Machado, Physica C **390**, 21 (2003).
- [6] X. G. Lu, X. Zhao, X. J. Fan, X. F. Sun, W. B. Wu, H. Zhang, Appl. Phys. Lett. **76**, 3088 (2000).
- [7] K. H. Muller, J. C. Macfarlane, R. Driver, Physica C **69**, 158 (1989).
- [8] K. H. Muller, J. C. Macfarlane, R. Driver, Physica C **203**, 178 (1991).
- [9] A.V. Pop, Supercond. Sci. Technol. **12**, 672 (1999).
- [10] A.V. Pop, G. Ilonca, D. Ciurchea, M. Ye, I.I. Geru, V. G. Kantser, M. Todica, R. Deltou, J. Alloys Compounds. **116**, 241 (1996).
- [11] D. Yegen, C. Terzioglu, O. Gorur, I. Belenli, A. Varilci, Chin. J. Phys. **44** (3), 233 (2006).
- [12] I. Duzgun, I. Karaca, A. Ozturk, S. Celebi, Physica C **436**, 93 (2006).
- [13] S. Celebi, Physica C **316**, 251 (1999).
- [14] A. Marino, J. E. Rodriguez, Physica C **235-240**, 1425 (1994).
- [15] A. Diaz, A. Pomar, G. Demarco, J. Maza, F. Vidal, J. Appl. Phys. **77**, 765 (1995).

*Corresponding author: avpop@phys.ubbcluj.ro